
www.manaraa.com

Sleepers and Workaholics:Caching Strategies in Mobile Environments(Extended Version)Daniel Barbar�aMatsushita Information Technology Laboratory2 Research Way, 3rd FloorPrinceton, N.J. 08540daniel@mitl.research.panasonic.com Tomasz Imieli�nskiRutgers UniversityDepartment of Computer ScienceNew Brunswick, N.J. 08903 USAimielins@cs.rutgers.eduAugust 29, 1994AbstractIn the mobile wireless computing environment of the future a large number of users equippedwith low powered palmtop machines will query databases over the wireless communication chan-nels. Palmtop based units will often be disconnected for prolonged periods of time due to thebattery power saving measures; palmtops will also frequently relocate between di�erent cells andconnect to di�erent data servers at di�erent times. Caching of frequently accessed data itemswill be an important technique that will reduce contention on the narrow bandwidth wirelesschannel. However, cache invalidation strategies will be severely a�ected by the disconnectionand mobility of the clients. The server may no longer know which clients are currently residingunder its cell and which of them are currently on. We propose a taxonomy of di�erent cache in-validation strategies and study the impact of client's disconnection times on their performance.We study ways to further improve the e�ciency of the invalidation techniques described. Wealso describe how our techniques can be implemented over di�erent network environments.Keywords: wireless, caching, data management, information services1 IntroductionIn the mobile wireless computing environment of the future [8] massive number of low poweredpalmtop machines will query databases over the wireless communication channels. Palmtop basedunits will often be disconnected for prolonged periods of time due to the battery power savingmeasures; they will also frequently relocate between di�erent cells and connect to di�erent dataservers at di�erent times.The mobile or nomadic computing environment no longer requires users to maintain a �xed anduniversally known position in the network and enables unrestricted mobility of the users. Mobilityand portability will create an entire new class of applications and possibly new massive marketscombining personal computing and consumer electronics.Figure 1 displays the architecture of the general mobile environment. It consists of two distinctsets of entities: mobile units MUs and �xed hosts, as shown in Figure 1. Some of the �xed hosts,called MSS (Mobile Support Station), are augmented with a wireless interface to communicate with1

www.manaraa.com

Fixed
Host

MSS

MSS
MSS

MSS

Wireless cell
Wireless cell

Fixed Network

Fixed
Host

Fixed
Host

Fixed
Host

Mbps to Gbps

19.2 Kbps 1 Mbps

Trusted part

Wireless LAN cell

MSS

Fixed Host

Mobile Support Station (has a wireless interface)

(no wireless interface)

Wireless radio cell

MU

MU
MUMU

Mobile unit

MU

MU

MU

(can be either dumb terminals or walkstations)Figure 1: A mobile environmentmobile units which are located within a radio coverage area called a cell. A cell could be a real cellas in cellular communication network or a wireless local area network which operates within thearea of a building. In the former case the bandwidth will be severely limited (supporting data rateson the order of 10 to 20 kbits/s). In the latter, the bandwidth is much wider - up tp 10 Mb/sec.Fixed hosts will communicate over the �xed network, while mobile units will communicate withother hosts (mobile or �xed) via a wireless channel.In this paper, we assume that the MUs can cache a portion of the database. They can do thisin a disk (if they are equipped with it), or any storage system that survives power disconnections,such as ash memories. We also assume that the data is updated in a stationary server and MUsonly carry copies of the data for their own use.Mobile computing will bring about a new style of computing. Due to battery power restrictions,the mobile units will be frequently disconnected (power o�). Most likely, the short bursts of activity,like reading, sending e-mail, or querying the local databases will be separated by substantial periodsof disconnection. In general, we will distinguish between the awake time, when the unit is \on", anda sleep time , when the unit is \o�", and inaccessible to the rest of the network 1 For our purposes,the main di�erence between disconnection and failure will be the high frequency of disconnectioncompared to failures 2In this paper we investigate a scenario where mobile units query databases that are replicatedon stationary servers connected by the �xed network. We will assume that each stationary servercorresponds to the local MSS. This server communicates with mobile clients over a wireless channel.We assume also that the database is being accessed by users who are mobile within a wide area,1There is another, intermediate state when the unit is in the \dozing mode" when it's CPU is working on thelower rate and when the unit can be awaken by a message from outside. For our purposes this state will correspondto the awake state. In the truly disconnected mode the mobile unit will simply ignore incoming messages2Another di�erence is due to the elective nature of disconnection - the user often knows when the disconnectionwill occur, so the mobile unit can prepare for it, as opposed to failures, which in general cannot be predicted.2

www.manaraa.com

move between di�erent cells and frequently disconnect. We also assume that data is being updatedat the servers and that the replicated copies are kept consistently3.Caching of frequently accessed data items will be an important technique to reduce contention onthe narrow bandwidth wireless channel between a client and a server. However, cache invalidationstrategies will be severely a�ected by the disconnection and mobility of the clients since a servermay no longer know which clients are currently located under its cell and which of them are \on".The following are examples of applications that can pro�t from the techniques we discuss inthis paper. The scenario we envision is that of a massive number of users querying local databasesover a wireless channel.1.1 Example 1Consider a large number of mobile users who are interested in the news updates involving businessinformation, recent sales/pro�t �gures, stock market data, etc. Assume that each of the users hasde�ned a \�lter" that selects the data items of interest to him/her. A user may switch his uniton to run an application program such as spreadsheet which queries these data items to performsome computations4. Subsequently, a user may switch o� his/her mobile unit to wake up later andquery again.1.2 Example 2Consider a server that administers navigational data containing tra�c reports and other usefulinformation for travelers. Assume this information is kept in a pictorial form: a map with iconsthat summarize tra�c volumes in each section of the map and other useful information. The mapis divided in sections by a grid. Each section is given a data identi�cation number. Each user isinterested at any particular moment in a set of data items that corresponds to the section in whichhe or she is currently located, plus the neighboring sections. These could be for instance, a set of 9neighboring sections with the center section being the current location of the user. The mobile unitmaintains a display of the data in these sections running an application program that periodicallyrefreshes the display by asking the values of each of the data items involved (sections). There is alarge degree of locality in these queries, since the users move relatively slowly. That is, the areacovered by each section in the map is fairly big with respect to the relative displacement of theuser per second. The user again, may switch the mobile unit o� and on.If the clients cache some of the items, we need to worry about strategies of invalidating thesecaches when the data gets updated. There are many ways of handling the invalidation. We vieweach invalidation strategy as an obligation that the server mantains towards its clients. Thatobligation is understood by both parts and serves as a contract. The mere understanding of thecontract gives clients a lot of information on how to handle their caches. This notion is similar tothe agreement set in [12] which determines for each data object whether the server and client copiesare equal. In [12], the authors use logic of authentication [5] and the notion of \belief" to reasonabout the cache coherence provided by some protocols. It is possible to use such tools to reasonabout the protocols presented in this paper as well.3The replication of the database between many servers is actually not important for the considerations in thispaper - we may as well assume that there is just one remote server4For example a mobile salesman may query inventory of the merchandise he is selling in order to check theavailability and pricing information 3

www.manaraa.com

As an example, consider the following obligation: \the server will notify about changes to itemx every day at 1pm." The clients that cache copies of x know that the consistency of the currentcopy is only guaranteed to be as of yesterday's value. If they need a stricter consistency, they willhave to ignore the cached value and go directly to the server, paying the price of communication.An obligation is a contract between the server and the clients that is understood by both. Theserver agrees to follow a well-understood policy on when to notify about changes to the items andhow to perform that noti�cation. The policy could be as unbinding as \the server does not notify atall about changes." The format of the noti�cation may vary from individual messages to broadcastreports. Also, the noti�cation could range from some delivering information from which the statusof a particular cache could be determined (by running a known algorithm) to delivering informationabout a particular item.Notice that the common understanding of an obligation gives the clients a lot of a-priori infor-mation. For instance, if the server agrees to notify every L seconds in case an item has changed,the lack of noti�cation tells the clients the cached valued is still valid for the next L seconds. Thisfact can be used to implement strategies that save transmission costs.Two types of obligations are commonly used by today's systems:� The server sends invalidation messages to the clients everytime an item changes its value. TheAndrew File System [16] and Coda [17] are example of a client-server architecture that usethis option. An invalidation message regarding a data item that just changed is directed toclients that are caching that particular item. To this end, the server has to locate appropriateclients. Since disconnected clients cannot be reached, each such client upon reconnection hasto contact the server to obtain a new version of the cache. Hence disconnection automaticallyimplies loosing a cache. The server in this case is stateful since it knows about the state ofthe clients' caches.� The clients query the server to verify the validity of their caches. The Network File System[15] is an example of a client-server architecture that takes this approach. Obviously, thisoption generates a lot of tra�c in the network.The two types of obligations mentioned above are not appropiate for mobile, wireless systems.The �rst one requires that the client register their prescence and that the server keeps informationabout every cache. Besides, even if the client is not about to use a particular cache, it gets noti�edabout its invalid status. This is a potential waste of bandwith. In the second approach, the unitsare required to send a message everytime they want to use their cache, a fact that is both wastefulof bandwidth and energy of the mobile unit.We explore here a di�erent kind of obligation. In our techniques, the server broadcasts a report(periodically or asynchronously) in which only the database items which have been updated areincluded. But then, since clients may have caches of di�erent age, these reports have to be wellde�ned by given a time window of reference for the updates or the update's timestamps, for instance.There is a number of possibilities for the composition of the reports which we shall describe in detailin the next section. The server in this case is stateless since it does not know about the state ofthe client's caches. (Or the clients themselves.)Which method should we choose? The answer depends on many parameters, such as theintensity of updates and queries, and the sleep and awake patterns of the mobile units.This paper is organized as follows. In Section 2 we state the problem. In Section 3 we describesome obligations based in invalidation reports. In Section 4 we present the models and analysis ofthe strategies. Section 5 present an asymptotic analysis based on the formulas derived in Section4. Section 6 shows examples of di�erent scenarios. Sections 7 and 8 show ways of improving the4

www.manaraa.com

e�ectiveness of the techniques presented. Section 7 focuses in reducing the size of the reportsby relaxing the cache consistency. Section 8 presents some adaptive techniques to enhance theperformance of the scheme. Section 9 shows the impact that di�erent networking scenarios canhave in the implementation of our techniques. Finally, in Section 10 we discuss future work andsummarize the paper's conclusions.2 Problem StatementThe database is a collection of n named data items. The data items can be numerical (stock data,temperature) as well as textual (news). Let us consider a set of data servers each covering a cell(see Figure 1). We assume that the database is fully replicated at each data server but each dataserver can only serve users which are currently located in its cell.Assume we have a large number of MUs residing in a cell and issuing queries which are simplerequests to read the most recent copy of an item. We assume that the database is updated only bythe server5. The MUs exhibit a large degree of data locality, querying a particular subset of thedatabase repeatedly. This subset is a hotspot for the MU.Let us now examine the possible strategies for handling the read requests of the mobile users.The goal is to minimize the number of bits that are transmitted in the channel both ways: downlink(from the server to the MUs), and uplink (from the MUs to the server). Alternatively, the MUsmay or may not cache data. If we choose to cache we may consider two ways of managing thecaches: having an stateful server or having an stateless server. The stateful server knows whichunits currently reside in its cell. It also knows the states of their caches. If a particular data itemchanges and it is cached by a user U, then the server will send an invalidation message, or a refreshmessage (with the item value) to U. This is analogous to a standard caching strategy used for theclient server architectures. To maintain the server state, the clients must inform the server whenthey come and go (i.e., enter its cell and leave it), they must also inform the server when they areabout to disconnect and when they reestablish the connection. (This is, of course, subject to theassumption that the clients will have time to do so. This will not be the case if the disconnectionis caused by a failure.)The stateless server case o�ers a variety of algorithms. Here, the server has no informationabout which units are currently under its cell and what are the contents and \ages" of their caches(how long ago a particular unit cached a particular data item). We will distinguish here betweensynchronous and asynchronous cache invalidation methods. In asynchronous methods the serverbroadcasts an invalidation message for a given data item as soon as this item changes its value.A client who is currently is the connect mode can then invalidate the cached version of this item.A client who is disconnected looses its cache entirely. We may avoid this by piggybacking someextra information on asynchronous invalidation messages; for example we may include informationabout other data items and the timestamps of their most recent changes. Then instead of just plaininvalidation message we get an invalidation report. In this case, the disconnected client may actuallybe able to save its cache if it can a�ord to wait for the �rst asynchronous invalidation report afterreconnection (provided that the report indicates that cached data items have not changed duringthe given client's disconnection period). Notice, however, that no guarantees can be given aboutwhen this report will be sent and hence no guarantees can be given for the waiting time.Synchronous methods of cache invalidation are based on periodic broadcasting of invalidationreports. A client has to listen to the invalidation report �rst in order to conclude whether its5This assumption is not really necessary but it considerably simpli�es the further analysis5

www.manaraa.com

query

update

TiTi-1Ti-2

= Invalidation Report

L

Figure 2: Invalidation Reportscache is valid or not. (Notice that this adds some latency to query processing.) If the decision isnegative the client has to issue a query to the server and refresh its cache. It may turn out thatthe invalidation report leads to a \false alarm," and in fact the cache was valid. However if, givenan invalidation report, the MU concludes that the cache is valid, it must in fact be so. Hence, ourschemes will only allow false alarm errors and will always correctly inform the client if his copy isinvalid.The validity of the client's copy is only guaranteed as of the last invalidation report. Formallythis means the following. The server timestamps each report with the time at the initiation ofthe broadcast. If the last report was broadcast with timestamp Ti and a client determines that aparticular item's cache is valid after listening to the report, this cache gets timestamped with thevalue Ti (marked as valid up to this time). If the client has to submit an uplink request because thecache is invalid, then the obtained copy has the timestamp equal to the timestamp of the request.The broadcast of the invalidation reports divides the time into intervals. Notice that the MU hasto wait for the next invalidation report before answering a query (see Figure 2). The MU keeps alist of items queried during an interval and answers them after receiving the next report.Notice that this way of operation has the following consequences:� If two or more queries of the same item are posed in an interval, they will all be answered atthe same time in the next interval.� The answer to a query will reect any updates to the item made during the interval in whichthe query was posed. (See Figure 2.) Notice that this is the case even if the query predatesthe update during the interval.We can classify invalidation reports sent by stateless servers according to di�erent criteria asfollows:� How the server sends the invalidation reports:6

www.manaraa.com

{ AsynchronousHere invalidation reports are broadcasted immediately after changes to data items occur.In particular, the report may just contain the name of the changed data item. In general,it may have extra information about other data items such as timestamps of their mostrecent changes.{ SynchronousWhen the invalidation reports are broadcasted periodically.� What kind of information is sent in the invalidation reports:{ State Based: reports that contain information about the values of the items in thedatabase. For example, a state based report can give the values of the items that havechanged since the last report.{ History Based: reports that contain information about when the items values havechanged. For example, a history based report can contain the identities of items thathave changed during the last w seconds (where w is a parameter) and the timestampsof their last update.� How the information is organized in the invalidation report:{ Uncompressed: the reports contain information about individual items. For example,an uncompress report may contain the values of the items that have changed since thelast report.{ Compressed: the reports contain aggregate information about subsets of items. Forexample, a compressed report may contain aggregate information about changes byusing predicates such as \There was a change on departure time in one or more of theeastbound ights."A wide range of methods can be proposed, in this paper we will concentrate on the synchronouscaching methods for the stateless server. Asychronous methods do not provide any latency guaran-tees for the querying client; if the client queries a data item after the disconnection period then iteither has to wait for the next invalidation report (with no time bound on the waiting time) or hasto submit the query to the server (cache miss). In case of synchronous caching, there is a guaranteedlatency due to the periodic nature of the synchronous broadcast. We will also demonstrate laterthat one of our synchronous broadcast methods (AT) is actually equivalent to the asynchronousbroadcast.In the next section we describe three of these methods.3 StrategiesIn this section we describe three strategies that use invalidation reports and a stateless server toful�ll the obligations. In what follows, we assume that an invalidation report is broadcasted everyL seconds and that D denotes the set of items in the database.7

www.manaraa.com

3.1 Broadcasting TimestampsWe call this strategy TS. In this case, the server agrees to the obligation of notifying about items thathave changed in the last w seconds. Thus, the invalidation report is composed by the timestampsof the latest change for these items. The MU listens to the report and updates the status of itscache. For each item cached, the MU either purges it from the cache (when the item is reportedto have changed at a time larger than the timestamp stored in the cache), or updates the cache'stimestamp to the timestamp of the report (if the item was not mentioned there). Notice that thisis done for every item in the cache, regardless of whether there is a pending query to this item ornot.The server begins to broadcast the invalidation report periodically at times Ti = iL. The serverkeeps a list Ui de�ned as follows:Ui = f[j; tj]jj 2 D and tj is the timestamp (1)of the last update of j such thatTi � w � tj � TigUpon receiving the invalidation report, the MU compares the items in its cache [j; tcj] (wherej 2 D and tcj is the cache's timestamp for j) to decide whether to keep j in the cache or not.Also, the MU has a list Qi = fjjj has been queried in the interval [Ti�1; Ti]g. The MU also keepsa variable Tl that indicates the last time it received a report. If the di�erence between the currentreport timestamp and this variable is bigger than w, the entire cache is dropped. More formally,the MU runs the following algorithm:if (Ti � Tl > w) f drop the entire cache gelse ffor every item j in the MU cache fif there is a pair [j; tj] in Ui fif tcj < tj fthrow j out of the cache gelse f tcj = Ti ggggfor every item j 2 Qi fif j is in the cache fuse the cache's value to answer the query gelse f go uplink with the query ggTl := Tig Following the terminology of Section 2, TS uses synchronous, history based, and uncompressedreports.3.2 Amnesic TerminalsIn this strategy, which we call Amnesic Terminals (AT), the server has the obligation of informingabout the identi�ers of the items that changed since the last invalidation report. A MU that has8

www.manaraa.com

been disconnected for a while, needs to start rebuilding its cache from scratch. As before, weassume that if the unit is awake, it listens constantly to reports and modi�es its cache by droppinginvalidated items.As in TS, the server builds a list of items to be broadcast. However, the list in AT is de�nedas follows: Ui = fjjj 2 D and the last update of j occurred attj such that Ti�1 � tj � Tig (2)Upon receiving the invalidation report, the MU compares the items in its cache with thosein the report. If a cached item is reported, then the MU drops it from the cache. Otherwise, itconsiders the cached item valid. Again, the MU has a listQi = fjjj has been queried in the interval [Ti�1; Ti]g.Again, the MU keeps a variable Tl that indicates the timestamp of the last report received.If the di�erence between the current report timestamp and Tl is more than L, the entire cache isdropped. The algorithm for the MU is as follows:if (Ti � Tl > L) f drop the entire cache gelse ffor every item j in the MU cache fif j is in the report fthrow j out of the cache gggfor every item j 2 Qi fif j is in the cache fuse the cache's value to answer the query gelse f go uplink with the query ggTl := Tig Finally, we would like to compare the AT method to the asynchronous broadcast of invalidationmessages for individual data items. Notice that in both cases the total number of messages down-loaded by the server is identical, the AT simply groups then together in the periodic invalidation6 .Also, in both cases, the client looses his cache entirely upon disconnection. Therefore AT is reallyequivalent to the asynchronous broadcast of invalidation reports and the results of analysis of ATwill apply equally well to the asynchronous broadcast.Following the terminology of Section 2, AT uses synchronous, history based, uncompressedreports.3.3 SignaturesSignatures are checksums computed over the value of items. Sending combined signatures haveproven to be a useful practice for comparing two or more copies of a �le that has a large number6Which actually may lead to saving in terms of total number of packets send due to better utilization of the spacewithin packets 9

www.manaraa.com

of pages (see [3, 14, 7, 11] for examples of such techniques). The techniques compute a signatureper page and a set of combined signatures that are the Exclusive OR of the individual checksums.Each combined signature, therefore, represents a subset of the pages. A node A sends its combinedsignatures to another node B, which can in turn can diagnose how many pages in its copy of the�le are di�erent from the A copy. Some of the techniques diagnose a �xed number of di�erentpages by carefully selecting the subsets that compose the combined signatures (e.g., [7, 11]). Othertechniques (e.g., [3, 14]) are probabilistic since they diagnose a page to be di�erent with certainaccuracy probability. In these techniques, the membership of a page in a subset is decided byrandom methods. Although most of the techniques (of both types) are designed to diagnose upto f di�erent pages, most of them will render a superset of the di�ering pages when the actualnumber of di�ering pages is greater than f .The �le comparison problem di�ers from our problem in the sense that theMUs do not store theentire database in their caches and therefore cannot compute the entire set of combined signatures.However, all the techniques can be easily changed to accommodate for this di�erence, by doing thefollowing. The server periodically broadcasts the set of combined signatures. (The compositionof the subsets of each combined signature is universally known and agreed before any exchangeof information takes place.) The MUs cache along with the individual items of interest, all thecombined signatures of subsets that include items of interest for theMU. The not cached combinedsignatures are considered equal to the ones that are being broadcast in the current interval.To make this paper self-contained and also to take into account the di�erence between �lecomparison and our problem, we present here a technique taken from [3] and the analysis of theprobability of falsely diagnosing items. We call this technique SIG.For each item i in the database, we can compute a signature sig(i), based on the value of theitem. If the signature has s bits, the probability of two di�erent items having the same signatureis 2�s.The signatures for a set of items can be combined into one by performing Exclusive OR of theindividual signatures. If the individual signatures have s bits, the combined signature will alsohave s bits. If two combined signatures of the same subset are equal, the individual items are equalwith a probability that depends on s. The probability that one or more of the items involved inthe signature are di�erent but have the same combined signature is approximately 2�s ([7, 14]).Notice that the server is agreeing to an obligation of reporting periodically the value of the items.However, the server chooses to ful�ll this obligation by aggregating the items into sets. This policyis also understood by the clients, along with the fact that the aggregation may cause the clients tofalsely diagnose some of caches as invalid.We describe a technique that is a variation of the techniques SUCC described in [14] andSUSPECTS in [3]). We assume that a MU contains n� items in the cache, and of those, f� = kfitems really need to be invalidated. There are m randomly chosen sets of items (a priori, beforeany exchange of signatures takes place) called S1; S2; :::; Sm. Each set is chosen so that an item i isin set Sj with probability 1f+1 . The server computes the m combined signatures sig1; sig2; :::; sigmand broadcasts them. A MU k, caches signatures sigi01 ; sigi02; :::; sigi0k, of subsets that include itemscached by the MU. The MU compares these signatures with the ones broadcast by the server,constructing a syndrome matrix as follows�j = (1 if j = ir; r 2 f1; :::; kg and sigj 6= sig0ir0 otherwiseNotice that the MU puts a 1 in �j if j is one of the subsets whose signature is cached by it10

www.manaraa.com

and the sent signature sigj and the cached signature sig0j do not match. In cases in which the twosignatures do match or the MU does not cache this signature, the entry is �lled with zero.With this matrix in hand, the MU can run the following algorithm, where T the set of itemswhose cache is to be invalidated. The notation i 2 Sj means to test whether item i belongs to thesubset whose combined signature is sigj . The variable �f is a threshold chosen as K(11+f (1� 1e)).(The reason for this will become obvious when analyzing the probability of a false alarm.)T = ;for j = 1 to m doif �j = 1 thenfor i = 1 to n doif i 2 Sj thencount[i] := count[i] + 1for i = 1 to n doif count[i] � m�f thenT := T S iEssentially, an item is declared invalid if it belongs to \too many" unmatching signatures.(suspected of being out-of-date) Again, as in the previous two methods we assume that the MU,while awake, is constantly listening to the reported signatures and invalidating cached data items\on line".Following the terminology of Section 2, SIG uses synchronous, state based, compressed reports.4 AnalysisIn this section we develop analytical models for the techniques presented in the last section. Webegin by stating the assumptions of our model:� There are n items in the database. We call the set of items D.� The bandwidth of the wireless network is W .� Each query that has to go uplink takes bq bits. The answer takes ba bits.� Each timestamp takes bT bits.� Updates occur following an exponential distribution, at an update rate of � per item.� Each MU will repeatedly query a subset of D with a high degree of locality. This subset isthus a \hot spot" for the MU. Each item in the hot spot will be queried at the MU at therate �.� In the caching strategies, the server broadcasts the invalidation report every L seconds.� The MUs get disconnected and reconnected while they are in the cell (the user turns themachine on and o�). We model this by assuming that in each interval anMU has a probabilitys of being disconnected and 1� s of being connected. We assume the behavior of the MU ineach interval is independent on the behavior on the previous interval. Notice that this is a11

www.manaraa.com

simplifying assumption, since in reality if a query has been issued in one interval, theMU willstay connected in the next in order to answer the query. We assume the query gets answeredbut independently the unit may decide to go to sleep.We will use the following notation:Prob[no queries in an interval j unit is awakeduring the interval] = e��L (3)q0 = Prob[awake and no queries in an interval]= (1� s)e��L (4)p0 = Prob[no queries in an interval] = s + q0 (5)1� p0 = Prob[one or more queries in an interval]= (1� s)(1� e��L) (6)u0 = Prob[no updates during an interval]= e��L (7)1� u0 = Prob[one or more updates duringan interval] = 1� e��L (8)We now derive the basic equation that describes the throughput (number of queries that canbe answered) for the stateless server case. First notice that the interval is always divided in twosections: the time taken to broadcast the report and the rest of the interval, which is used to sendqueries to the server and receive the answers. The total number of bits that can be transmittedduring the interval is LW . We call the number of bits transmitted by the broadcast BC . Therefore,the number of bits available for answering queries that were cache misses is LW �BC . Now, if thetotal number of queries per interval handled by the system (throughput) is T , a fraction T (1� h),where h is the average hit ratio in aMU, corresponds to the queries that were not cache hits. Eachone of this queries takes (bq + ba) bits, so the tra�c in bits due to queries that did not hit thecaches is T (1� h)(bq + ba). Since this amount has to be equal to LW � BC , we have:T = LW � BC(bs + ba)(1� h) (9)In order to \normalize" the throughput of each one of the techniques and to be able to fairlycompare the e�ectiveness of each one of them, we de�ne the e�ectiveness of an strategy as:12

www.manaraa.com

e = TTmax (10)where Tmax is the throughput given by an unattainable strategy in which the caches are inval-idated instantaneously and without incurring any cost. In the rest of this section we will analyzeTmax and the throughput and e�ectiveness of each of the strategies presented in the last sectionalong with the ones obtained when caches are not used (all the queries are transmitted uplink).4.1 Maximal ThroughputConsider a strategy in which the server knows exactly which units are in the cell and the contentsof their caches. Assume also that everytime an update occurs, the server instantaneously sendsan invalidation message to all the MUs that have the item in their cache. By this unattainablestrategy we would get the maximum hit ratio (a miss would occur only when an update to theitem has happened). Since there are no invalidation reports, BC would be equal to 0. Then, themaximal throughput will be (using Equation 9):Tmax = LW(bq + ba)(1�MHR) (11)Where MHR is the maximal hit ratio, i.e., the hit ratio achieved by this strategy. To computethis, assume that we have a query occurring at some particular instant of time. The query will\hit" the cache if: a) the last query on this item occurred exactly � seconds ago, and b) there hasbeen no updates during the two queries.The probability of the �rst event is simply the probability of the interarrival time being � . Thatis �e��� . The probability of the second event is e��� . Therefore, MH can be computed as:MHR = Z 10 �e���e���d� (12)evaluating the integral, MHR = ��+ � (13)4.2 No cachingOf course, when the MUs are not caching any data, there will not be any invalidation report(BC = 0) and no intervals. However, we compute here the number of queries that can be processedduring an interval of duration L, in order to compare this to the values obtained for the rest of thestrategies. Since no caches are available, the hit ratio will be 0 and all the queries will go uplinkfor processing. Therefore, the throughput for the no-cache scenario is:Tnc = LW(bq + ba) (14)13

www.manaraa.com

4.3 TSWe assume that the window w is a multiple of L. (This is a very natural choice of values for w,since queries get answered only after listening to the next invalidation report.) Thus w = kL. Inorder to compute BC for this strategy, we need to calculate the number of items that have changedduring the window w. We call this value nc. This value can be computed as:nc = n(1� e��w) (15)The total size of the report will be nc(log(n) + bT). Therefore, the throughput is given by:TTS = LW � nc(log(n) + bT)(bq + ba)(1� hts) (16)We need to compute The average hit ratio for TS, hts, is analyzed in Appendix 1. The upperand lower bounds for it are:(1�p0)u01�p0u0 � (1�p0)uk+10 sk1�p0u0 � (1�p0)uk+10 skq0(1�p0u0)2 < hts (17)< (1�p0)u01�p0u0 � (1�p0)uk+10 sk1�q0u04.4 ATThe size of the report in AT becomes nLlog(n), where nL is the expected number of items thathave changed since the last broadcast. This value can be computed similarly to Equation 15:nL = n(1� e��L) (18)Again, the throughput can be found by computing from Equation 9 as follows:TAT = LW � nLlog(n)(bq + ba)(1� hat) (19)The hit ratio hat is analyzed in Appendix 2. Its equation is:hat = (1� p0)u01� q0u0 (20)4.5 SIGWe begin analyzing the probability of false alarm. The probability of falsely diagnosing items inthe cache can be studied from two points of view. First there is the probability of not diagnosingan item as invalid when in reality its cache is outdated. This, according to our earlier remarks canbe bounded by 2�g and can be made arbitrarily small by increasing g (at the expense of more bitstransmitted of course).Secondly, there is the probability of diagnosing a cache as invalid, when it is not. To computethis probability, consider �rst the probability of a valid cache being in a di�ering signature. Forthis to happen, the following must be true:1. The item must belong to the set in the signature. This happens with probability 11+f .14

www.manaraa.com

2. Some item whose cache has to be invalidated must be in the set and the signature must bedi�erent, the probability of which is (1� (1� 11+f)f)(1� 2�g), (Notice that even though oneor many of such items might not be in the cache of the particular MU, they might be in asubset that contains an item cached by the MU.) This expression can be approximated by1� 1e .So, the probability p of an valid cache being in a signature that does not match isp = 11 + f (1� 1e) (21)If we de�ne now a binomial variable X with parametersm and p, we can compute the probabilityof this variable to exceed the threshold. This probability is pf = Prob[X � m�f] = Prob[X �Kmp]. (This explains the reason why the threshold �f was chosen to be Kp in the algorithm.)By results that can be found in [3, 14], based in the Cherno� inequality ([6]), we can state thatpf = Prob[X � Kmp] � exp(�(K � 1)2mp3) (22)with 1 � K � 2.Now the probability of not having a false diagnose is simply pnf = 1� pf .Now, in reality, we want that the probability of any of the valid caches in the MU being falselydiagnosed to be smaller than a certain threshold, �. That is (n� � f�)pnf � �. In order to makethis true, we have to send m combined signatures such that:m � 3(ln(1� + ln(n� � f�))p(K � 1)2 (23)Making K = 2 and noticing that ee�1 < 2 and n > n� � f�, Equation 23 can be made true ifthe following holds: m � 6(f + 1)(ln(1�) + ln(n)) (24)The throughput using this number of signatures is given by:Tsig = LW � 6g(f + 1)(ln(1�) + ln(n))(bq + ba)(1� hsig) (25)The hit ratio for SIG is analyzed in Appendix 3. The equation is:hsig = (1� p0)u0pnf1� p0u0 (26)5 Asymptotic AnalysisThis section analyzes the throughput of the techniques presented in extreme cases.The �rst analysis we want to present shows the behavior as the probability of sleeping s tendsto 0 and 1. The following table summarizes the limit values for hit ratios and probabilities.15

www.manaraa.com

parameter s! 0 s! 1q0 e��L 0p0 e��L 1hts (1�e��L)e��L(1�e��Le��L) 0hat (1�e��L)e��L(1�e��Le��L) 0hsig (1�e��L)e��L(1�e��Le��L)pnf 0As the MUs sleep less and less (i.e., as s ! 0), a behavior that we call \workaholic," the hitratios for all the techniques presented approach the same value, with SIG lagging behind by thefactor pnf . In this case, the best throughput will be exhibited by AT, since its report will be theshortest one.When the MUs sleep a lot (i.e., as s ! 1), a behavior that we call \sleepers," the hit ratiosof all the technique approach 0. With large values of s, the no-caching scenario eventually willwin. However, it is also important to notice that hat (Equation 20), goes to 0 faster than itscounterparts hts (Equation 18) and hsig (Equation 26). The reason for this is that the denominatorof hat contains the term 1� q0u0 which tends to 1 as s approaches 0, while the other two containthe term 1 � p0q0 which approaches 1 � u0. This is specially true for small values of u0, i.e., forlow update rates.We will show now the behavior as u0 approaches 1. This happens for very small values of �L,that is, when the updates are infrequent. The next table shows the behavior of the hit ratios.parameter u0 ! 1hts 1� sk � skq0 < hts < 1� sk + sk+11�q0hat 1� s1�q0hsig pnf>From this table we can deduce that the hit ratio of TS (approximately 1� sk) will be betterthan the one for AT, especially as the number of queries decreases (q0 approaches 0). Since the sizeof the report is also proportional to the number of items that changed, TS is likely to be a winnerover AT in this scenario. As for SIG, the hit ratio exhibits a constant behavior in this case, equalto the probability of not having a false diagnose. This is slightly better than the behavior of hTS ,but it is likely to be o�set by the e�ect of a larger invalidation report.It is worth pointing out that for update intensive scenarios (u0 approaching 0), all the hit ratioswill approach 0. Therefore, at high rates of updating, the no caching strategy will be a winner.The analysis performed in this section shows the following conclusions:� For \workaholics" the strategy AT will be the winner in throughput.� For \sleepers" both TS and SIG may outperform AT. At some point for large values of s(heavy sleepers), no-caching will be the best choice. The strategy TS will outperform ATwhen the update rate is small.6 Some ExamplesIn this section we show some scenarios for the techniques presented in this paper. Each scenariocorresponds to a set of values for the parameters involved.The �rst scenario corresponds to the following set of values:16

www.manaraa.com

0.2 0.4 0.6 0.8 1
s

0.1

0.2

0.3

0.4

0.5

0.6

e
 s

e
 ts

e
 a Figure 3: E�ectiveness for Scenario 1� 10�1 query/sec.� 10�4 updates/sec.L 10 sec.n 103bT 512W 10000 b/seck 100f 10g 16This set of parameters corresponds to an scenario of infrequent updates (u0 = 0:999). Figure 3presents the e�ectiveness of the techniques as s varies from 0 to 1.As we can see, SIG (solid line) behaves better than the other two techniques during the entirerange of s. The e�ectiveness of AT (ea) goes rapidly to 0 as s grows. TS exhibits an intermediatee�ectiveness. It is worth pointing out that for this scenario, the value of en the e�ectiveness of theno-caching strategy remains very close to 0 for the entire interval.In the next scenario, we increase the size of the database and the bandwidth. The parametersare as follows (notice that we have also decreased the window size for TS):

17

www.manaraa.com

0.2 0.4 0.6 0.8 1
s

0.1

0.2

0.3

0.4

0.5

0.6

e
 s

e
 ts

e
 a Figure 4: E�ectiveness for Scenario 2� 10�1 query/sec.� 10�4 updates/sec.L 10 sec.n 106bT 512W 106 b/seck 10f 10g 16Figure 4 shows the results for this set of parameters. They are similar to those for scenario1. The reduced window size (k = 10) makes TS stay competitive with the rest of the techniques(otherwise, the size of the report would be too large).For the third scenario, we have the following set of parameters:� 10�1 query/sec.� 10�1 updates/sec.L 10 sec.n 103bT 512W 10000 b/seck 10f 20g 16This scenario is update intensive (the rate of updates equals the rate of queries). We haveincreased f to reect the need to respond to many more changes in SIG.Figure 5 shows the behavior of the techniques as s goes from 0 to 1. TS is not included in this18

www.manaraa.com

0 0.2 0.4 0.6 0.8 1
 s

0.2

0.4

0.6

0.8

1

e
 n

e
 a

e
 sFigure 5: E�ectiveness for Scenario 3plot, since the size of the report for this scenario would exceed L, rendering the technique unusable.We can see that AT dominates SIG for the entire range. However, at some point (s = 0:8) theno-caching strategy becomes more advantageous. It is worth noticing that the values of e�ciencyremain relatively high even for s = 1. This is due to the relatively low value of Tmax achievedin this scenario. In other words, due to the high update rate, even the maximum throughputachievable is low. It is encouraging that AT can achieve up to 40% of the maximum throughput inthis disadvantageous situation.The next scenario (Scenario 4) is similar to Scenario 3, but with a bigger database and higherbandwith. Here is the set of parameters:� 10�1 query/sec.� 10�1 updates/sec.L 10 sec.n 106bT 512W 106 b/seck 10f 200g 16The results for Scenario 4 are reported in Figure 6. We see that the e�ectiveness of AT reducesconsiderably from the one obtained in Scenario 3. The reason for this is that the throughput for ATdoes not increase at the same rate that Tm does, thereby reducing the e�ectiveness. The strategySIG, on the other hand, becomes more competitive for this scenario, being the choice for almost allthe range of s values. As in Scenario 3, TS is not included because the size of the report exceedsL, rendering the technique unusable.The �fth scenario is based on the following parameters:19

www.manaraa.com

0 0.2 0.4 0.6 0.8 1
 s

0.2

0.4

0.6

0.8

1

e
 n

e
 a

e
 s

Figure 6: E�ectiveness for Scenario 4� 10�1 query/sec.s 0L 10 sec.n 103bT 512W 10000 b/seck 100f 1g 16We vary this time the update rate from � = 10�4 to � = 210�4 and plot the results in Figure7. This scenario corresponds to \workaholics" (s = 0) with a varying rate of updates. We see AToverperforming TS in the entire range. The TS technique degrades rapidly with the increase onthe update rate. SIG, on the other hand behaves marginally worse than AT in the entire range ofvalues.Finally, Scenario 6 is based on the following parameters:� 10�1 query/sec.s 0L 10 sec.n 106bT 512W 106 b/seck 10f 10g 16The results, reported in Figure 8, are similar to those obtained in Scenario 5. Strategies AT and20

www.manaraa.com

0.0001 0.00012 0.00014 0.00016 0.00018 0.0002

0.2

0.4

0.6

0.8

1

e
 s

e
 ts

e
 a

Figure 7: E�ectiveness for Scenario 5SIG are practically undistinguishable. Strategy TS degrades rapidly as the update rate increases.7 Relaxing the Consistency of the CachesIf the applications supported by the system allows it, we could relax the consistency of the caches,thereby opening the door for shorter invalidation reports. For instance, if the MUs are cachingstock prices, it may be perfectly acceptable to use values that are not completely up to date, aslong as they are within 0.5 percent of the true prices. This can be acomplished by considering thecached values as quasi-copies of the values in the server ([1]). A quasi-copy is a cached value that isallowed to deviate from the central value in a controlled way. Quasi-copies represent another formof obligation from the server. As long as the clients understand what the server is providing, thesystem can take advantage of this concept to reduce the size of the reports.A feature of a quasi-copy is the coherency condition attached to it. Once an object is keptcached as some unit, its coherency condition speci�es the allowable deviations from the centralcopy. We are particularly interested here in two conditions (taken from [1]).The �rst one is the Delay Condition, which establishes how much time an image may lag behindthe true value. Formally, for an object x, an allowable delay of � is given by the condition:_ times t � 0 9k such that0 � k � �and x0(t) = x(t� k) (27)Where x0(t) is the value cached at a unit at time t and x(t) is the value at the server at t.This coherency condition can be easily enforced by the MUs by simply dropping their cache ofx every � seconds. On the other hand, if the MU drops x and the value of it has not changed atall, the unit may be querying the server unnecesarely the next time it needs x. So, a better way toweave this concept into our broadcasting techniques is the following.21

www.manaraa.com

0.0001 0.00012 0.00014 0.00016 0.00018 0.0002

0.2

0.4

0.6

0.8

1

e
 s

e
 ts

e
 a

Figure 8: E�ectiveness for Scenario 6For every item x in the database, the server keeps a vector obligationlist(x) associated to it.The structure obligationlist is built as a queue. The values stored in obligationlist will be usedto check whether the item should be included in the next report or not, in case it changes. Forsimplicity assume that � = jL, that is, � is a multiple of the latency L. Then if x is reported atinterval i, the value i is pushed into obligationlist(x). If an MU queries the server for x at a timet, just before interval p, the value p is pushed into obligationlist(x). Now, when it comes the timeto build the report, besides the conditions expressed in the techniques described before, the serverchecks if the next interval is equal to l+j, where l is the �rst element in the queue obligationlist(x).If so, x can be considered for reporting, (in case it also satis�es the normal conditions, e.g., in AT,the item has changed since the last report), otherwise, it need not be considered.In the MU that is caching x, a timestamp ts(x) marks the age of the cache. The cache is keptuntil:� The value of x is invalidated by the report, or� The cache is � seconds old. In this case, the unit waits for the next report. If x is there, itdrops the cache, otherwise it keeps it and makes ts(x) equal to the time of the current report.The technique described above is bound to reduce the number of times x is reported.A second coherency condition that is of interest to us is the arithmetic condition ([1]). In it,if the value of the object is numeric, the deviations are limited to the di�erence between values ofthe object and its central copy. Formally,_ times t � 0 ���x0(t)� x(t)��� � � (28)Again, if a deviation of � is tolerable for the applications we are running, we could simply modifythe strategies of Section 3 to report an item only if it changes more than the prescribed limit. Thiswill also reduce the number of times the item is reported.22

www.manaraa.com

8 Adaptive Invalidation ReportsWe have proposed a number of strategies for stateless cache invalidation. In this section we proposean extension of one of these strategies to dynamically adjusts to the changing query, update andwake-up ratios of the environment.Our technique will be based on the broadcasting timestamps (TS) strategy. Recall that in theTS strategy the server sends the timestamps of the latest change for items which have had updatesin the last w seconds. The MU listens to the \report" and updates its cache by either throwing outan item which according to the report has changed (its timestamp is larger than the timestampstored in the cache) or updates its timestamp to the timestamp of the latest report (if the itemwas not mentioned there). The unit, when it is awake always listens to the reports and updatesthe cache even when it is not actively querying them.The hit ratio, denoted by hTS which, of course, depends on the window size w. The larger thewindow is the more \immune" the unit is to the sleep time. Note, that the window size has nothingto do with the latency L between the two consecutive invalidation reports.There is a number of important shortcomings of the TS method. To illustrate them let usconsider a scenario when a particular data item never changes. In this way, this data item will notbe included in any invalidation report broadcasted after the timestamp t = w (assuming that thetime starts from zero). Therefore, if a client cached this data item earlier and then went to sleep,loosing some of the invalidation reports, he will have to submit an uplink request upon the nextquery. If the item i is queried very often by clients who are disconnected most of the time (sleepers)there will be a lot of unnecessary uplink tra�c. In the environment in which sleepers prevail thatwould be a highly undesirable feature. In fact, for an item like this, the hit ratio could be equal toone, if the clients are adequately informed. Therefore, it makes sense to keep an \in�nite" windowfor the item like this, including the pair < i; 0 > 7 is each invalidation report. Hence:If an item is queried very often by units which sleep a lot it makes sense to extend the windowsize for such an itemConsider now another extreme case. Suppose, some item j changes so often that the hit ratiois equal to zero, i.e. the clients have to request the item uplink upon each query. In the situationlike this it makes no sense to include j in the invalidation report. Hence the window w for such anitem should be equal to zero8.Therefore:If the hit ratio for a given data item is low even for units which do not sleep at all then the itemshould not be included in the reportSummarizing, we should modify TS to have window size dependent on the data item. In order todo that, the server has to use some feedback from the clients to modify the window size accordingly.In the rest of this section, we present two approaches that use di�erent feedback information.8.1 Method 1In this method, the clients send some extra information along with the queries that are sent uplink.The server uses this information to �gure out how much, if any, to change the window size for eachitem.70 - is the time at the beginning of the time scale8One has to be careful, though, during the \transition" period when clients may falsely conclude from the absenceof this item in the report that it is unchanged 23

www.manaraa.com

Let us de�ne the maximal hit ratio for an item MHR(i) as the hit ratio that a client cachingthat item would achieve if the client did not sleep at all (never gets disconnected). If MHR(i) ishigh and the actual hit ratio (AHR(i)) is lower due to the sleep time then we will increase thewindow size. We will also decrease the size of the window if the MHR is low or if the overall queryactivity for this item is low.Both the maximal hit ratio and the current hit ratio for a given data item can be determined bythe server if he knows about all cache hits of the client. But how does the server get this informationif the clients are satisfying the cache hits locally? The clients, upon the uplink query request aboutthe item i will piggyback all the timestamps of requests about i which were satis�ed locally sincethe previous uplink request about i. In this way, the server, knowing the update history and the fullhistory of queries the server can compute both MHR(i) and AHR(i) (the actual hit ratio). In fact,we will assume that the server will make this computations only periodically. The whole time scalewill be divided into evaluation periods which are multiples of the invalidation report latencies L.Hence, the reevaluation of the server's strategy which results in the changes of individual window'ssizes will happen only once per evaluation period.Let us now discuss what happens during the server's strategy reevaluation. We will assumethat the evaluation period is kL.If MHR(i) > AHR(i) then there is a room to improve. It can be done by increasing the windowsize for the item i. But is it worth it? If we increase the size of the window we will increasethe overall cumulative size of the invalidation reports (since the particular will stay longer in thereport).Let� q[i] be the total number of queries about i that the server received during the last evaluationperiod. Notice that this parameter is not the number of queries that went uplink, but the totalnumber of queries posed by the clients. The server receives this as part of the informationthat is piggybacked with the queries.� AHR(i; new) be the actual hit ratio for i during the last evaluation period.� AHR(i; old) be the actual hit ratio for i during the period preceding the last evaluation period.� Report(i; new) be the number of times i was mentioned in the invalidation reports during thelast evaluation period. This value, of course, will be an integer in the interval [0; k].� Report(i; old) be the number of times i was reported in the invalidation reports within theprevious evaluation period. Again, an integer in the interval [0; k].We de�ne, nowGain(i) = ((1� AHR(i; new))� (1� AHR(i; old)))q[i]bq�[Report(i; new)� Report(i; old)][log(n)+ bT] (29)rearranging this equation, we have:Gain(i) = (AHR(i; old)� AHR(i; new))q[i]bq�[Report(i; new)� Report(i; old)][log(n)+ bT] (30)24

www.manaraa.com

where n is a number of items in the database, bq is the size in bits of the query that is sentuplink (on the average) and bT is the size of the timestamp.Gain(i) represents the overall di�erence in terms of number of bits being send uplink anddownlink as the result of increasing the actual hit ratio at the expense of the larger invalidationreport. If the gain is positive (above a certain threshold �) then we will increase the size of thewindow, otherwise we will decrease the size of the window.Windows are modi�ed according to the following formula, where � is a small integerw(new; i) = (w(old; i)+ � if Gain(i) � 0w(old; i)� � otherwise (31)where w(new; i) is a new window size, while w(old; i) is the old window size.We still have to answer what happens at the �rst evaluation period, when AHR(i; old) is unde-�ned. We will always start with the same window size w0(i) for all items. In the �rst reevaluationwe will increase the size of the window for a given data item if the MHR(i) is larger then AHR(i),otherwise we will decrease the size of the window.One can easily check, that in case of the never or rarely changing data item, its window willincrease steadily if the query rate is high and the units sleep a lot. Also, in the reverse situation, ifthere so many queries and the maximal hit ratio is small the window will eventually shrink to zero.Notice that given the history of prior query requests which have been satis�ed locally (cachehits), those which had to go uplink (cache miss) and the history of updates, the server can determinea posteriori the optimal window size w(i) for the item i. This size will minimize the sum of allinvalidation report entries about the item i plus the total size of the uplink requests which wouldbe submitted if a given window w would be applied. We do not do this here, being aware of thedangers of data over�tting and preferring the incremental dynamic approach.8.2 Method 2In this method, the clients do not send extra information with the queries. The server use a muchcoarser measure to determine if the window size needs to be changed.Let Q[i; new] be the number of queries that have been asked, i.e., sent uplink, by the clientsduring the last evaluation period, and consequently, Q[i; old] the number of queries in the previousinterval. Let Report(i; old) and Report(i; old) be as before.Then we de�ne the gain in this method as:Gain(i) = (Q[i; new]�Q[i; old])q[i]bq�[Report(i; new)� Report(i; old)][log(n)+ bT] (32)And, as in Method 1, modify the window size using Equation 31.Notice that the di�erence in the tra�c uplink in this method is measured as the actual di�erence,but does not reect the change in hit ratios. In other words, if a sudden, bursty activity over anitem occurs, this method will wrongfully diagnose the need to change the window size for the item.25

www.manaraa.com

In return for this coarser behavior, the method is less costly since it does not require the clients topiggyback any information with the queries or the server to compute the hit ratios.9 The role of di�erent network environmentsSo far we have discussed cache invalidation methods quite abstractly, without refering to anyparticular network enviroment. It is clear that in order to be able to use invalidation reports thenetwork has to support broadcasting mode. Additionally, it should be possible for the MSS toprecisely control the timing to download the invalidation reports. In this section we discuss howrealistic this last assumption is and what we can do in networks in which this is not the case.In environments like Ethernet which use CSMA/CD type of a protocol it is not easy to controlthe time in which the broadcast will be performed. Similarly, in CDPD (Cellular Digital PacketData) 9, which is currently begining to be deployed, there is no guarantees about the timing for anyframe of digital information since voice channels carry higher priority than data. In such cases wecan resort to the use of the multicast mode as a way of \addressing" the invalidation reports. In thismode, the receivers are tuned to responding to a particular address. The client and the MSS simplyagree on the multicast group address of invalidation reports. The MSS periodically downloads theinvalidation report under the prede�ned multicast address and the wireless client tunes to thataddress. The CPU of the MU can be in a doze mode and need to be awaken only when a messageto that particular address arrives (i.e., the invalidation report). In this way, we avoid having to beactive all the time, waiting for the report to be sent. Precise timing and synchronization are notimporant any more.In Multiple Access Schemes which are based on the concept of reservation, such as PRMAprotocol developed at WINLAB [13] or the MACAW [4] protocol at Xerox, it is possible to guranteesynchronization on the downlink channel and gurantee the precise timing of delivery. Then theMUhas to be awaken by a timer just before the invalidation report is about to be transmitted. (Someclock synchronization algorithm should be run by the system to guarantee a maximum deviationof the MU's clock with respect to the server's clock.)Summarizing, the concept of invalidation reports is largely orthogonal to the speci�c networkingenvironment. It is just the concept of address of the report which changes depending on theunderlying network. The address could either be a timestamp or a multicast address.10 Conclusions and Future WorkWe have proposed three new cache invalidation methods suitable for the wireless environment withthe high rate of client's disconnection. In all three strategies the server periodically broadcasts thereport which reects the changing database state. We have categorized the mobile units on thebasis of the amount of time they spend in their sleep mode into sleepers, and workaholics. Di�erentcaching strategies turn out to be e�ective for di�erent populations. Thus, signatures which arebased on the data compression technique for �le comparison are best for long sleepers, when theperiod of disconnection is long and di�cult to predict. Broadcasting with timestamps proved tobe advantageous for query intensive scenarios, that is, scenarios when the rate of queries is greaterthan the rate of updates, provided that the units are not workaholics. As the rate of updates9the basic idea of CDPD is that empty voice channels on existing cellular networks are used to send data packets byusing a protocol similar to CSMA/CD, called DSMA/CD -Digital Sensing Multiple Access with Collision Detection-)26

www.manaraa.com

increases, TS becomes less and less e�cient. Finally, the AT method was best for workaholics, thatis, units which rarely go to sleep and are awake most of the time.The methods presented in this paper are by no means exhaustive. There is a number of possibleimprovements. Aggregate invalidation reports can be considered, with varying granularity of time(timestamps given on the per minute instead of, say, per second basis) and items (changes reportedonly per group of items). We plan to address these isles in a future paper.Caching is only one example of the wide range of classical systems issues which are expected to bea�ected by the mobile computing environment [8]. In particular, we expect that data broadcastingover wireless medium will be an e�ective way of disseminating information to a large number ofusers [9] since the cost of the wireless broadcast does not depend on the number of users. In thispaper we made a step in this direction by demonstrating how broadcasting can be used for cacheinvalidation.There is a number of possible improvements to the scheme presented in the paper: the perfor-mance of signatures can be improved by considering the weighted schemes where each data itemwould be weighted according to the relative frequency it is accessed in a given cell and according tohow often it is updated. For example, the \hot spot" items can be individually broadcast while therest of the database items would participate in the signatures. In this way the signature will varyfrom cell to cell depending on the local usage patterns. The database may not be fully replicatedin all data servers either. In this case the cost of querying di�erent data items may depend on thelocation of the user.We have presented two methods for dynamically adjusting the invalidation report based in theinformation that the server gets from the mobile stations. One can easily see that this method willimprove the behavior of the caches in cases such as a rarely changing item or a rapidly changingitem.Other methods can bene�t from the same type of dynamic adjusting. For instance, one of themethods presented in [2] uses signatures (checksums) to compress the data sent in the invalidationreport. Signatures are combined in groups and the mobile units use this signatures to diagnosewhich items are invalid. The method introduces a probability of false diagnose, meaning that theunit believes an item to be invalid when in reality that is not the case. (However, when the itemis diagnosed as valid, it is in e�ect so.) A dynamic strategy could change the way the combinedsignatures are formed, according to the individual demands for the items.Finally, we like to point out that broadcast solutions require MUs to listen for reports thatinclude items the MU may not be caching. This presents a problem if the user is paying for thelistening time. However, there are ways to alleviate this problem. For instance, the server canbroadcast indexes that will tell the unit when to listen to items of interest [10]. Moreover, webelieve that there will be services for which the user will pay a at fee (subscription rate) or no fee(services constrained to buildings) for their usage. In these cases, broadcast mechanisms have thepotential of providing better throughput than other solutions.11 AcknowledgmentsWe would like to thank K. Kaplan and J.L. Palacios for their help on developing the probabilisticmodels presented in this paper and S.Vishwanthan for a number of useful comments. Special thanksgo to Hector Garcia-Molina for helpful suggestions concerning the general model of the paper andfor carefully proofreading it. 27

www.manaraa.com

References[1] R. Alonso, D. Barbar�a, and H. Garcia-Molina. Data Caching Issues in an Information RetrievalSystem. ACM Transactions on Database Systems, 15:359{384, September 1990.[2] D. Barbar�a and T. Imieli�nski. Sleepers and Workaholics: Caching Strategies in Mobile Envi-ronments. Technical Report MITL-TR-58-93, MITL, June 1993.[3] D. Barbar�a and R.J. Lipton. A Class of Randomized Strategies for Low-Cost Comparison ofFile Copies. IEEE Transactions on Parallel and Distributed Systems, 2(2):160{170, 1991.[4] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang. Macaw: A Media Access Protocol forWireless LANs. In Proceedings of the ACM SIGCOMM'94 Conference, London, UK, 1994.[5] M Burrows, M. Abadi, and R. Needham. A Logic of Authentication. ACM Transactions onComputer Systems, 8(1):18{36, February 1990.[6] H. Cherno�. A Meassure of Asymptotic E�ciency for Tests of a Hypotesis Based on the Sumof Observations. Annals of Mathematical Statistics, 23:493{509, 1952.[7] W.K. Fuchs, K. Wu, and J. Abraham. Low-Cost Comparison and Diagnosis of Large RemotelyLocated Files. In Proceedings of the Fifth Symposium on Reliability of Distributed Softwareand Database Systems, January 1986.[8] T. Imielinski and B.R. Badrinath. Querying in Highly Mobile and Distributed Environments.In Proceedings of the Eighteen International Conference on Very Large Databases, Vancouver,August 1992.[9] T. Imielinski, B.R. Badrinath, and S. Viswanathan. Data Dissemination in Wireless andMobile Environments. Technical Report 59, WINLAB, Rutgers University, June 1993.[10] T. Imielinski, S. Viswanthan, and B.R. Badrinath. Indexing on Air. In Proceedings of ACM-SIGMOD 1994 International Conference on Management of Data, Minneapolis, Minnesota,May 1994.[11] T. Madej. An Application of Group Testing to the File Comparison Problem. In Proceedingsof the International Conference on Distributed Computing Systems, June 1989.[12] L. Mummert, J.M. Wing, and M. Satyanarayanan. Using Belief to Reason About Cache Co-herence. In Proceedings of the ACM Sigact-Sigops Symposium on the Principles of DistributedComputing, August 1994.[13] S. Nanda, D. Goodman, and U. Timor. Performance of PRMA: A packet voice protocol forcellular systems. IEEE Transactions on Vehicular Technology, 40(3), August 1991.[14] S. Rangarajan and D. Fussell. Rectifying Corrupted Files in Distributed File Systems. InProceedings of the International Conference on Distributed Computing Systems, May 1991.[15] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Desing and Implementationof the Sun Network Filesystem. In Proceedings of the USENIX Summer Conference, pages119{130, June 1985. 28

www.manaraa.com

[16] M. Satyanarayanan, J. H. Howard, D. N. Nichols, R. N Sidebotham, A. Z Spector, and M. J.West. The ITC Distributed File System: Principles and Design. In Proceedings of the 10thACM Symposium on Operating Systems Principles, pages 35{50, December 1985.[17] M. Satyanarayanan, J.J. Kistler, P. Kumar, M. Okasaki, E.H. Siegel, and D.C. Steere. Coda: AHighly Available File System for a Distributed Workstation Environment. IEEE Transactionsson Computers, 39(4), April 1990.

29

www.manaraa.com

queryquery

no queries

or sleep

update vulnerability

wFigure 9: Scenario I
query query

no queriessleep sleep sleep

wFigure 10: Scenario IIAppendix 1In order to compute the hit ratio, we assume that a query has occurred at a particular instant oftime and we compute the conditional probability of the value in the cache being valid. To illustratethe issues, let us consider three scenarios in Figures 6, 7 and 8.Figure 6 shows an scenario in which the last query occurred within the window w of the currentquery. We will have a miss if an update occurred within the shaded region indicated in the �gure.Notice that the MU could have disconnected in the periods between the two queries with no e�ectto the hit probability.Figure 7 shows an scenario in which the last query occurred in a period beyond k intervalsbefore the current query. In this case, if the unit has gone to sleep for k periods, as shown in the�gure, the MU would have no way of knowing if the cache is invalid or not and would have todeclare a miss. (Independently on whether an update occurred between the two queries or not.)Figure 8 shows again an scenario in which the last query occurred in a period beyond k intervalsbefore the current query. However, in this case, theMU was not disconnected for k or more periods.Therefore, the query will be a hit if there are no updates during the shaded region indicated in the
query query

no queriessleep sleepno queries

update vulnerability

wFigure 11: Scenario III30

www.manaraa.com

queries

queries sleep (k intervals)

sleep or awake and no queries

sleep or awake and no queries

queries

awake and

no queries

awake and

no queries

sleep (k intervals)

awake and

no queries

sleep or

awake and

no queries

sleep or

queries

awake and

no queries

sleep or awake and

no queries

sleep (k intervals)

awake and

no queries

sleep or

i-1 intervals

sleep (k intervals)

Figure 12: Sleeping Streak�gure.We can divide now the cases of study in two: when the number of periods between the twoqueries is less than k, and when it is larger than k. Let us begin with the �rst case.Let the two queries occur at i intervals of each other, with 1 � i � k. Then all we need forthe second query to be a hit is no updates during i periods. The probability of a hit in this casebecomes (1 � p0)pi�10 ui0 The �rst term is the probability of the �rst query, the second term theprobability of having (i� 1) periods of no queries in the intervals between the queries and the lastterm the probability of no updates during i intervals.For the second case, the queries occur at i intervals of each other, with k < i. In this case, inorder to have a hit, the unit cannot sleep k or more consecutive intervals and we should not haveupdates during i intervals. Let pki be the probability of sleeping k or more consecutive intervals,given that the queries happen at i intervals of each other. This probability is di�cult to compute,but we will present expressions for the upper and lower bounds. An upper bound can be expressedas: pki � skpi�1�k0 + (i� 1� k)q0skpi�2�k0 (33)To see the justi�cation for Equation 33 consider Figure 9. It shows the way in which the i� 1intervals can contain a \sleeping" streak of k intervals or more.Since the probability of having no queries (being asleep or posing no queries while awake) duringi� 1 intervals is p(i�1)0 , the probability of having no queries and no \sleeping" streak of k intervalsduring these i� 1 intervals is p(i�1)0 � pki . Multiplying this probability by ui0 we get the probabilityof a hit ratio for the second case.Thereforehts > kXi=1((1� p0)pi�10 ui0) + 1Xi=k+1(1� p0)(p(i�1)0 � (skpi�1�k0 + (i� 1� k)q0skpi�2�k0))ui0 (34)Manipulating Equation 34, it becomes: 31

www.manaraa.com

hts > (1� p0)uo k�1Xi=0(p0uo)i+(1� p0)u0 1Xi=k(pouo)i� (1� p0)u0sk 1Xj=0((pj0uj+k0)+ q0p0 (jpj0uj+k0)) (35)And, hts > (1� p0)u01� p0u0 � (1� p0)uk+10 sk1� p0u0 � (1� p0)uk+10 skq0(1� p0u0)2 (36)For the other bound, it is enough to see that:pki > (i� 1� k)skqi�1�k0 (37)Therefore,hts < kXi=1((1� p0)pi�10 ui0) + 1Xi=k+1(1� p0)(p(i�1)0 � (i� 1� k)skqi�1�k0)ui0 (38)Manipulating this equation we have:hts < (1� p0)u01� p0u0 � (1� p0)uk+10 sk1� q0u0 (39)

32

www.manaraa.com

query queryawake and no queries

(i-1 intervals)

update vulnerabilityFigure 13: Scenario for ATAppendix 2To compute the hit ratio for AT, it is enough to consider the event that last query happenedi intervals before the current one. Also, the unit should not have been disconnected at any of thei� 1 intervals between the queries (otherwise, the MU would have dropped its cache altogether).Also, there can be no updates in the last i intervals. (See Figure 10.)Thus, the equation for the hit ratio becomes:hat = (1� p0) 1Xi=1 qi�10 ui0 (40)or simply: hat = (1� p0)u01� q0u0 (41)

33

www.manaraa.com

Appendix 3The analysis is similar to the one made for AT. Here, in order to have a hit, the MU must notissue any queries between the last one and the current one, separated by i�1 intervals. It does notmatter whether the unit sleeps or not. Also, no updates must occur during the i intervals. Finally,the diagnose must be correct. This last event happens with probability pnf . (Equation 22.)So, the equation becomes: hsig = (1� p0) 1Xi=1 pi�10 ui0 (42)or simply: hsig = (1� p0)u0pnf1� p0u0 (43)

34

